miniMDS: 3D structural inference from high-resolution Hi-C data

نویسندگان

  • Lila Rieber
  • Shaun Mahony
چکیده

Motivation Recent experiments have provided Hi-C data at resolution as high as 1 kbp. However, 3D structural inference from high-resolution Hi-C datasets is often computationally unfeasible using existing methods. Results We have developed miniMDS, an approximation of multidimensional scaling (MDS) that partitions a Hi-C dataset, performs high-resolution MDS separately on each partition, and then reassembles the partitions using low-resolution MDS. miniMDS is faster, more accurate, and uses less memory than existing methods for inferring the human genome at high resolution (10 kbp). Availability and implementation A Python implementation of miniMDS is available on GitHub: https://github.com/seqcode/miniMDS . Contact [email protected]. Supplementary information Supplementary data are available at Bioinformatics online.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Inference of Spatial Organizations of Chromosomes

Knowledge of spatial chromosomal organizations is critical for the study of transcriptional regulation and other nuclear processes in the cell. Recently, chromosome conformation capture (3C) based technologies, such as Hi-C and TCC, have been developed to provide a genome-wide, three-dimensional (3D) view of chromatin organization. Appropriate methods for analyzing these data and fully characte...

متن کامل

FastHiC: a fast and accurate algorithm to detect long-range chromosomal interactions from Hi-C data

MOTIVATION How chromatin folds in three-dimensional (3D) space is closely related to transcription regulation. As powerful tools to study such 3D chromatin conformation, the recently developed Hi-C technologies enable a genome-wide measurement of pair-wise chromatin interaction. However, methods for the detection of biologically meaningful chromatin interactions, i.e. peak calling, from Hi-C da...

متن کامل

Inferential Structure Determination of Chromosomes from Single-Cell Hi-C Data

Chromosome conformation capture (3C) techniques have revealed many fascinating insights into the spatial organization of genomes. 3C methods typically provide information about chromosomal contacts in a large population of cells, which makes it difficult to draw conclusions about the three-dimensional organization of genomes in individual cells. Recently it became possible to study single cells...

متن کامل

Using DNase Hi-C techniques to map global and local three-dimensional genome architecture at high resolution.

The folding and three-dimensional (3D) organization of chromatin in the nucleus critically impacts genome function. The past decade has witnessed rapid advances in genomic tools for delineating 3D genome architecture. Among them, chromosome conformation capture (3C)-based methods such as Hi-C are the most widely used techniques for mapping chromatin interactions. However, traditional Hi-C proto...

متن کامل

FisHiCal: an R package for iterative FISH-based calibration of Hi-C data

UNLABELLED The fluorescence in situ hybridization (FISH) method has been providing valuable information on physical distances between loci (via image analysis) for several decades. Recently, high-throughput data on nearby chemical contacts between and within chromosomes became available with the Hi-C method. Here, we present FisHiCal, an R package for an iterative FISH-based Hi-C calibration th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2017